PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Hoistway Construction.
B. Machine Room.
C. Equipment in Hoistway and Machine Room.
D. Hoistway Entrances.
E. Car and Hoistway Doors.
F. Electronic Door Edge Sensor.
G. Car Enclosure.
H. Elevator Floor and Platform.
I. Electrical Components.
J. Controller.
K. Remote Monitoring System.
L. Signals and Operating Fixtures.
M. Recessed Motion Sensing Unit.
N. Cameras.
O. Signs.
P. Vibration Absorption Mounts.

1.02 RELATED SECTIONS

A. Section 03 61 11, Non-Shrink Grout
B. Section 08 90 00, Louvers
C. Section 09 91 00, Painting
D. Section 09 67 70, Elevator Spray-On Flooring
E. Section 10 40 00, Safety Specialties
F. Section 20 70 26, Common Materials and Methods for Electrical Systems
G. Section 26 05 24, Low and Medium Voltage Wires and Cables
H. Section 26 50 00, Lighting
I. Section 27 30 01, Telephone Systems
J. Section 28 31 00, Fire Detection and Alarm System
K. Section 28 41 29, Closed Circuit Television Systems

1.03 MEASUREMENT AND PAYMENT

A. General: The elevator will not be measured separately for payment but will be paid for as part of the indicated Contract lump sum price for elevator.

1. Elevator maintenance will be paid as lump sum price as indicated on the Bid Form.

2. Chargeable repairs will be paid separately for labor and maintenance as indicated on the Bid Form. Labor will be paid as unit price and material will be actual cost plus mark-up as indicated on the Bid Form.

1.04 REFERENCES:

The requirements of the prevailing versions of the following standards at time of contract signing shall be met.

A. American National Standards Institute (ANSI):
 1. ANSI A117.1 Accessible and Usable Buildings and Facilities
 2. ANSI Z97.1 Glazing Materials Used in Buildings, Safety Performance Specifications and Methods of Test

B. American Society of Mechanical Engineers (ASME):
 1. ASME A17.1 Safety Code for Elevators and Escalators
 2. ASME A17.2 Guide for Inspection of Elevators, Escalators, and Moving Walks
 3. ASME A17.3 Safety Code for Existing Elevators and Escalators includes Requirements for Electric and Hydraulic Elevators and Escalators

C. American Society for Testing and Materials (ASTM):
 1. ASTM A36/ A36M Specification for Carbon Structural Steel
2. ASTM A1008/A1008M Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable

3. ASTM B3 Specification for Soft or Annealed Copper Wire

4. ASTM B174 Specification for Bunch-Stranded Copper Conductors for Electrical Conductors

5. ASTM B209 Specification for Aluminum and Aluminum-Alloy Sheet and Plate

6. ASTM B211 Specification for Aluminum and Aluminum-Alloy Rolled or Cold Finished Bar, Rod, and Wire

7. ASTM B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

9. ASTM C864 Specification for Dense Elastomeric Compression Seal Gaskets, Setting Blocks, and Spacers

10. ASTM C1048 Specification for Heat-Strengthened and Fully Tempered Flat Glass

11. ASTM D2240 Test Method for Rubber Property-Durometer Hardness

12. ASTM F36 Test Method for Compressibility and Recovery of Gasket Materials

D. American Welding Society (AWS):

1. AWS D1.1 Structural Welding Code - Steel

E. National Association of Architectural Metal Manufacturers (NAAMM):

1. AMP 503 Finishes for Stainless Steel

National Electrical Manufacturers Association (NEMA):

1. NEMA AB 1 Molded-Case Circuit Breakers, Molded Case Switches, and Circuit-Breaker Enclosures

2. NEMA PB 1 Panelboards

F. National Elevator Industry, Inc. (NEII):

1. NEII-1 Building Transportation Standards and Guidelines
G. National Fire Protection Association (NFPA):
 1. NFPA 70 National Electrical Code

H. Steel Structures Painting Council (SSPC):
 1. SSPC-SP 1 Solvent Cleaning
 2. SSPC-SP 3 Power Tool Cleaning
 3. SSPC-CS23.00 Specification for the Application of Thermal Spray Coating (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion Protection of Steel

I. Underwriters Laboratories Inc. (UL):
 1. UL 62 Flexible Cords and Cables
 2. UL 1581 Reference Standard for Electrical Wires, Cables, And Flexible Cords

J. District Technical Manual – SCADA System Function Description

K. BART Facilities Standard Drawings AS08, AS09, AS10, AS11, Architectural Elevator Details

1.05 REGULATORY REQUIREMENTS

A. In addition to the foregoing referenced standards, any regulatory requirements which govern elevator work of these Specifications shall include at a minimum the following codes and regulations:

C. California Code of Regulations (CCR):
 1. CCR Title 8, Industrial Relations
 2. CCR Title 24, Part 2, California Building Code (CBC)
 3. CCR Title 24, Part 3, California Electrical Code

D. California Occupational Safety and Health Act (CAL/OSHA)

E. In the event of a conflict between codes, regulations, standards or these specifications, the most stringent requirement shall take precedence unless specifically required by the Engineer.
1.06 QUALITY ASSURANCE

A. The Contractor shall be responsible for integrating all elevator and hostway components and related systems to ensure a fully compliant, operable system.

B. General: At the completion of the work, the elevator shall meet the minimum requirements of CCR Title 8, CCR Title 24, Part 2, NEC, ASME A17.1, A17.2, A17.3, and NFPA 101. Install per manufacturer’s requirements and as specified herein.

C. Comply with AWS D1.1 standards for finished work and for qualifications of welding operators and corrosion protection.

D. The controller wiring shall be carried out in accordance with the minimum requirements of CCR, Title 24, Part 3, California Electrical Code.

1.07 SYSTEM DESCRIPTION

A. Elevator Type: Geared traction with AC drive motor, 480 V, 3 phase

B. Load Capacity: 3,500 pounds for elevators with side opening doors and 4,000 pounds for elevators with center opening doors in all stations and parking structures.

C. Speed: 100 feet per minute for Station Elevators and 250 feet per minute for Parking Structure Elevators, or as determined by the Engineer with maximum 5 percent speed variation under any loading condition in either direction.

D. Stops: As indicated.

E. Main Floor: Ground floor, unless otherwise specified in the Contract Specifications.

F. Entrance size:
 1. Minimum 42 inches wide by 84 inches high for elevators with side opening doors.
 2. Minimum 48 inches wide by 84 inches high for elevators with center opening doors.
 3. Entrances shall be sized for emergency evacuation of a horizontally positioned ambulance stretcher 24 inches by 84 inches or per fire department having jurisdiction, whichever is greater.

G. Travel: As indicated and verified in field.

H. Controller: The controller shall be a Designated Matching Product (DMP) as specified herein.

I. Machine Location: Overhead, typical.
J. Car Inside Dimension: Car minimum inside clear dimension shall be 80 inches wide by 63 inches deep for Passenger Station Elevators and 82 inches wide by 72 inches deep for Parking Structure Elevators from wall to wall. Height from floor to ceiling shall be 96 inches minimum.

K. Remote Monitoring System: The elevator Remote Monitoring System (RMS) shall be interface with the existing BART Escalator/Elevator monitoring system (EERMS), as specified herein.

L. Electronic car door edge sensors: Sensors shall be a District Matching Product (DMP) as specified herein.

M. Car Enclosure: Passenger type.

N. Comply with standards established in the NEII Building Transportation Standards and Guidelines, unless specified otherwise herein.

O. Doors:
 1. For elevators rated for 3,500 pounds, car and hoistway doors shall be side opening.
 2. For elevators rated for 4,000 pounds, car and hoistway doors shall be center opening.
 3. Car and hoistway doors shall be horizontal, sliding, single speed, stainless steel with a vision pane in each door.

1.08 DESIGN AND OPERATION REQUIREMENTS

A. Elevator System General Requirements:
 1. Elevators shall be designed specifically for the operation, loading and environmental conditions encountered in extensively used, heavy duty rail transit systems and shall have a minimum design life of 20 years.
 2. Elevators shall operate while exposed to sunlight, rain, airborne dust, and debris.
 3. The final assembly of all components shall not pose hazardous conditions to the public or maintenance personnel. Surface irregularities, sharp edges, or protrusions in public or maintenance areas shall not be permitted.
 4. Provide convenient and safe equipment access for inspection, cleaning, maintenance, repair, and replacement.
 5. All gaps and running openings within regulatory tolerances shall be properly closed by the use of appropriate sealant or another approved means installed in accordance with the manufacturers’ instructions.
6. For parts and equipment subject to wear and requiring periodic replacement, the Contractor shall furnish key and seat, nut, screws, or other removable and replaceable type mechanical fasteners. Such replacements shall not diminish original structural integrity. Use of rivets or similar type fasteners requiring physical deformation during field positioning will not be permitted.

7. The elevator equipment shall be quiet and smooth running and shall not exceed the following maximum noise output levels during all phases of operation:
 a. Eighty decibels measured in the elevator machine room
 b. Seventy decibels measured in the elevator car
 c. Seventy decibels measured at the elevator hoistway entrances

8. Fire Protection: Contractor shall provide non-combustible materials for components.

B. Seismic Criteria:
 1. Installation and equipment designed for static and for seismic conditions shall be provided in accordance with regulatory requirements.
 2. Provide hardware necessary to protect motors, drives, and door operators.
 3. Seismic design shall be based on seismic requirements for elevators in ASME A17.1 and section 3137 (a) of The California Code of Regulations in effect at the time of Contract signing.

C. Power:
 1. The main elevator power shall be 480 Vac, three phase, 60 Hertz.
 2. As a minimum, three separate 120 Volt circuits shall be provided for each of the following: elevator car lighting, elevator pit and hoistway lighting and receptacles, and car camera. Any 120 Volt elevator control circuits shall be provided from the elevator controller by means of a step down transformer.

D. Elevator Controller:
 1. Refer to Article 2.13, Controller, herein. The controller for Station Elevators shall be a field programmable microprocessor based, simplex selective-collective, automatic operation with closed loop, variable voltage, variable frequency control. The controller for Parking Structure Elevators shall be a field programmable microprocessor based, group automatic operation with closed loop.
 2. Elevator operation shall be by means of pushbuttons in the car, at terminal and intermediate landings numbered to correspond to landings served, by SINGLE CALL pushbuttons at terminal landings, and by UP and DOWN pushbuttons at intermediate landings.
3. The activation of one or more pushbuttons shall illuminate the pushbuttons and dispatch the nearest car to the designated landings in the order in which the landings are reached by the car, regardless of the order in which the calls were registered. When the car reaches the landing, the illumination of the corresponding pushbutton shall cease.

4. If hall calls are received for the opposite direction of travel, the car shall continue in the same direction until all calls in the initial direction are answered, then the car shall reverse direction to collect call in the opposite direction.

5. If no calls are registered and the car is unoccupied, the car shall either remain at that landing until further calls are registered or be dispatched to the designated, programmable, home landing and stop without door operation.

6. Special Operations:

 a. Inspection Operation: Inside the car service cabinet within the Car Operating Panel, there shall be an Inspection key-operated switch for normal “run” or “inspection” operation. There shall be three means of car movement for inspection operation; at the car top inspection station, inside the controller, and by the hoistway access key switches. Car movements initiated by the car-top inspection station or by the hoistway key switches shall be at low or full speed and disable the controller inspection switch. The controller shall be equipped with a toggle switch for low or high speed selection. The car will run either up or down by constant pressure on the up or down switches, provided the doors are closed and the safety circuit is made. Releasing the directional button will cause the car to stop immediately. Activating any of the run/stop switches to “stop” position will render the car inoperative. Turning the inspection switch to the “run” position will restore the car to automatic operation.

 b. Independent Service: A key switch shall be provided in the car service cabinet to allow for independent service. The car can be removed from automatic operation and be operated manually. Independent service shall have full control of the starting, stopping, and direction of car travel. The car shall respond to car buttons only. The arrival gongs, hall lanterns, and hall calls shall be inoperative during independent service mode.

 c. Operation Under Fire Conditions: Provide special fire service to comply with the requirements of CCR Title 24, Part 2, California Building Code, Chapter 30 for State Fire Marshal (SFM) facilities, ASME A17.1, and local fire codes having jurisdiction. As a minimum, provide the following:

 1) Phase I recall, three-position key switch at main (egress floor) level keyed to EX 515 shall be integrated in hall call stations with engraved instructions. Elevator operation shall be in accordance with the applicable codes.

 2) Phase II fire service shall be provided. A three position key-operated switch keyed to EX 515 shall be mounted in the Car Operating Panel and operate in accordance with applicable codes.
3) All initiating fire alarm signals shall be routed to the main fire alarm panel through four fire alarm control relays with the following signals:
 a) Primary Recall.
 b) Secondary Recall.
 c) Shunt Trip.
 d) Fire Fighter’s Hat.

 The relays shall be installed inside a red NEMA 4 box within 3 feet of the elevator controller. The station fire alarm panel shall initiate the appropriate signals to the elevator controller in accordance with applicable codes.

4) Spot-type photoelectric smoke or heat detectors (depending upon the hazard’s environment) will be provided adjacent to the station and parking structure elevator openings (located in accordance with the relevant requirements within the code). With the exception of the detector located adjacent to the elevator opening on the primary elevator recall floor, operation of any of these detectors will initiate the elevator capture and recall functions from the FACU to recall the elevator to the designated primary floor. Operation of the detector adjacent to the elevator opening on the primary recall floor will initiate the elevator capture and recall functions from the FACU to recall the elevator to the designated secondary floor. These devices will communicate with, and be powered from the FACU. Operation of a device will cause an alarm signal to be transmitted to the FACU; will cause operation of all of the station’s occupant notification appliances; will cause transmission of an alarm signal to BART’s monitoring location; and will cause the recall operations identified above.

d. Operation under Earthquake Conditions: Provide seismic operation in accordance with the requirements of CCR Title 8. Provide a counterweight derailment device (ring and string). Each location shall be equipped with a seismic device in the Train Control Room, Auxiliary Communications Room, or elevator equipment room as indicated on the Contract Drawings that provides a set of dry contacts for the control of the elevators and escalators within that station or parking structure. If a seismic device is indicated in the Parking Structure elevator equipment room, that device shall also be equipped with a set of contacts to the communications room as indicated on the Contract Drawings. Provide the wiring, raceway and elevator controller circuitry for the seismic control circuit or circuits.

e. Operation under Standby Power: Provide standby power to each elevator from the permanent emergency generator system. A control signal from the generator shall be provided to the elevator controller or elevator group to place the elevator or group of elevators in emergency power mode, which will cause the elevators to return to the designated floor and remain there with the doors open. If there are a group of elevators, power shall be provided to only one elevator at a time and automatically switch to the remaining elevators until all elevators have returned to the designated floor with the
doors open. Provide an EX 513 key operated selector fixture, for stand-by power operation. Design and location to be approved by the Engineer.

7. The controller shall be equipped to provide remote control and indication signals to the Station Agents Booth as specified in Article 2.15, Signals and Operating Fixtures.

 a. Car moving up (indication) for Station Elevators only.
 b. Car moving down (indication) for Station Elevators only.
 c. Concourse (control & indication, car call) for Station Elevators only.
 d. Street or Platform, one for each landing as required (control and indication, car call) for Station Elevators only.
 e. Car Occupied (indication) for Station Elevators only.
 f. Alarm (indication) for both Station and Parking Structure Elevators.
 g. Elevator shutdown (control and indication) for both Station and Parking Structure Elevators

8. The controller shall be equipped to provide the indication signals to the EERMS as specified in Article 2.14, Remote Monitoring System.

9. The system shall utilize an automatic two-way leveling device to control the leveling of the car. Leveling range plus or minus one fourth inch under any loading conditions, including cable stretch. Over travel, under travel, and rope stretch shall be compensated for and the car brought level to the landing sill. Car shall not overrun floor and level back in either direction.

10. All options or parameters shall be field-programmable without need for external devices. Programmable settings shall be stored in non-volatile memory.

11. An electro-mechanical switch shall open all power circuits to the driving machine motor and brake. A single ground, short circuit or solid-state control failure shall not prevent the application of the brake.

12. The automatic leveling zone shall not extend more than 12 inches above or below the landing level, nor shall the doors begin to open until the car is within six inches of the landing. In addition, the inner landing zone shall not extend more than three inches above or below the landing. The car shall not move if it stops outside the inner leveling zone unless the doors are fully closed and locked.

13. The elevator controller shall be equipped with a toggle switch to disable the door operator power while still moving the car under independent service from the controller.

14. The controller shall have a brake pick switch and indication that will shutdown the car as soon as possible or at the next landing should the brake fail to release in its intended manner.
E. Elevator Door and Hoistway Door Operation:

1. Hoistway doors and car doors shall:
 a. Open automatically and simultaneously when the car arrives at the destination landing.
 b. Be equipped for readily and independently adjustable door hold open times when car stops for a car or hall call. Main floor door hold times shall be adjustable independently of other floors.
 c. Close after hold open time interval has elapsed and no obstruction has been detected, or when the car is called or dispatched to another landing, or when either the car door close button or a car call is pushed.

2. Activation of the door close button in the car shall cancel door timer and close the doors provided there is no obstruction.

3. All closing times shall be adjustable from five seconds to 30 seconds without exceeding closing force specified herein.

4. Door Dwell Times: Door dwell times shall be adjustable above and below, with initial settings as follows:
 a. Hall Call: 20 seconds
 b. Car Call: 10 seconds
 c. Reopening: 20 seconds
 d. Nudging: 16 seconds

F. Access Requirements: Signals and fixtures shall be as indicated on Contract Drawings and specified herein. Components may be rearranged upon Engineer’s written approval. Location and arrangement of fixtures shall comply with Accessibility requirements of the applicable Codes.

1.09 SUBMITTALS

A. General: Refer to Section 01 33 00, Submittal Procedures, and Section 01 33 23, Shop Drawings, Product Data, and Samples, for submittal requirements and procedures.

B. Shop Drawings: Submit complete fully legible shop drawings and data including installation details and printed manufacturer’s specifications for elevator car, control system, cable and counterweight system, emergency and safety system, door assembly, door operators, and others as required. Text font type and size shall be uniform throughout the set of shop drawings. Shop drawings and details shall include the following:

1. Car interior panel, reflected ceiling, flooring, and base material specification.

2. Signal Fixtures: Control buttons and lamps.
3. Hoistway Entrance: Hoistway and car doors, sills and sill supports for hoistway and car as indicated, door operators, drive and clutches.

4. Elevator doors and door operators. Provide components, layout detail complete with fastenings, etc.

5. Weights of car and hall doors.

6. Indicate direction of stainless steel directional grain.

7. Paint schedule.

8. Wiring diagrams.

9. Complete power, control, and indication schematic diagrams. Provide wiring list and connection diagrams. Diagram shall include interface connections to the external system circuits, such as fire alarm, telephone, CCTV, EERMS and Station Agents Booth. Provide the installation wiring lists for all devices, detailing each individual cable and wire number, color and terminal designation per elevator, used during the installation.

10. Assignments of all processor inputs/output conductors including position indicating system.

11. Traveling cables: Provide details of the traveling cable attachment on both ends.

12. Detail machines and drives sheave(s).

13. Car and counterweight guide rail supports and deflector sheave supports.

15. Limit switches and mounting detail.

16. Details of hoistway. Verify that auxiliary machine spaces located at the top of the hoistway shall have clear headroom of not less than 60 inches.

C. Engineering Data Including Design Calculations:

1. Submit separate data sheets for machine room heat release calculations based on 30 round trips per hour for two hours, power requirements, conduit fill, and car and counterweight guide rails and supports. Power requirements shall indicate maximum and average power demands, and requirements for emergency power operation.

2. Structural design calculations for car and counterweight assemblies, car and counterweight guide rails and supports, machine assembly and machine beam bed plate supports and deflector sheave supports. Design calculations shall be performed by a Civil or Structural Engineer currently registered in the State of California.
D. Samples: Provide samples of materials and finishes exposed to public view. Include the following items:

1. Car finish floor, 12 x 12 inch panel.
2. Car finish wall and ceiling surfaces, 12 x 12 inch panel.
3. Buttons, switches and lamps.
4. All Braille signs, full size.
5. Traveling cables, 12 inches long.
6. Stainless steel for Car Operating Panel, 4 x 4 inch.
7. Glass, 6 x 6 inch.

E. Product Data:

1. Submit manufacturers’ design data and material specifications for all parts and equipment. Specifications shall include test methods required to verify compliance with specifications.

2. Product data for lubricants, sealers, paints, solvents and potentially hazardous substances shall be submitted for Engineer’s review. The Contractor shall submit the necessary Material Safety Data Sheets (MSDS).

F. Submit a Test Program for approval with a test schedule and test procedure format for every representative type of test indicated in Article 3.03, Field Quality Control.

G. Test Reports: The Contractor shall submit a complete report describing the detailed results of each regulatory test.

H. Maintenance Program: The Contractor shall submit revenue service maintenance program showing functions to be performed and their scheduled frequency.

1.10 SPARE PARTS

A. General: Spare Parts shall be provided in accordance with Section 01 78 44, Spare Parts and Maintenance Materials, augmented by the following provisions.

B. Spare parts shall become the District’s property and shall not be used by the Contractor for maintenance.

C. A “set” is the number of parts required for one fully operable elevator.

D. Recommended Spare Parts List: Submit for approval a List of recommended spare parts necessary to support maintenance for a period of two years. The Engineer will review the List, assign a District Stock Number to each item and return the List to the Contractor. The Contractor shall incorporate the District’s Stock Number and resubmit the List, together with two additional sets of bar code labels to the District.
E. Minimum Required Spare Parts List. The Contractor shall provide at a minimum the following spare parts for each elevator installed:

1. Controller components as recommend by manufacturer: One set of each printed circuit board, relays, and fuses as approved by Engineer.
2. Car and hall buttons and lamps, arrival gong lamps: Two sets.
3. Car fluorescent lamps: Four each.
4. Limit switches: Two each.
5. Rollers for roller guides: Two of each size.
6. Gibs: Two of each size used.
7. Door Astrigal material: Four sets.
8. Pana 40 door edge complete assembly with controller and cables.
9. Door clutch assembly.
10. Hall door lock assembly.

F. Delivery: Notify the Engineer in writing 72 hours prior to any delivery. The notification shall identify the specific parts to be delivered. All spare parts shall be delivered no later than 30 Days prior to the final acceptance of the elevator.

1.11 OPERATION AND MAINTENANCE DATA

A. Submit the following in accordance with Section 01 78 23, Operation and Maintenance Data prior to Acceptance.

1. Operation and Maintenance Manuals may consist of off-the-shelf manuals as described in Section 01 78 23, Operations and Maintenance Data. However, the manual shall include a separate chapter or volume to identify the unique items and installations that are unique specifically to the Contract, that is covered in the off-the shelf manuals. This chapter shall meet the requirements of system manuals as specified in Section 01 78 23, Operations and Maintenance Data, excluding articles 1.12C, 1.12D and 1.12E. This chapter and its content and wiring diagrams shall be provided in electronic format as specified in Article 1.11 of 01 78 23.

2. Wiring Diagrams: One laminated set mounted in machine room, and three full size sets delivered to the Engineer. Wiring diagrams shall be “As Built”, specific for this installation, and reference identification on drawings shall match points identified on terminals of controllers (wire lists are not acceptable). Wiring diagrams shall include interface and schematic diagrams.

3. Maintenance Tool and Software Manuals: Furnish maintenance tools and supporting software documentation required for the complete maintenance of the
entire system including diagnostics and adjustment. Maintenance tools may be hand held or built into control system and shall be neither of the type requiring recharging or reprogramming nor of the automatic destruct type. The tool and supporting software may be programmed to operate only with this project’s identification serial number.

1.12 MAINTENANCE SERVICES

A. Maintenance Program: Within 90 Days after the Notice-To-Proceed and prior to installation, Contractor shall submit a detailed maintenance program showing function to be performed and their schedule. The maintenance program shall include preventive maintenance, trouble call service, and emergency repair service during the Maintenance Period. The maintenance program shall include all work and materials needed to keep the equipment in perfect operating condition. Contractor shall coordinate and perform maintenance in a manner to result in minimum inconvenience to the public.

B. Maintenance Period

1. Contractor shall perform preventive maintenance and any repairs on the elevator due to equipment failure for a period of twelve months after Substantial Completion and the unit is opened for public use. During the Maintenance Period, Contractor shall provide complete preventive and corrective maintenance on all components and assemblies of elevator. At the end of the 12 months Maintenance Period, the District may extend the maintenance period by an additional two years. If the District exercises this option, the Contractor will be compensated in accordance with the corresponding bid schedule line item. The District reserves the right to terminate the Maintenance Period at any time, upon giving 30 Days’ notice to the Contractor. Contractor will not be relieved of maintenance until Relief from Maintenance is granted by the District.

2. Maintenance service shall not be subcontracted by shall be performed by or supervised by the Contractor’s qualified CCCM personnel.

3. Maintenance shall include all labor and materials need to achieve and maintain minimum 96 percent reliability for the equipment. Contractor shall coordinate and perform maintenance in a manner to result in minimum inconvenience to the public.

4. At the completion of the Maintenance Period, the equipment shall receive a final inspection performed jointly be the Contractor and the District representative. All discrepancies identified shall be corrected at no additional cost to the District. The term of the Maintenance Period shall be extended to provide sufficient time required to clear all identified discrepancy items as approved by the Engineer at no additional cost to the District.

5. The maintenance service will not be required to cover adjustments, repairs, or replacement parts due to misuse, abuse, or vandalism.
6. The Contractor shall maintain local inventory of all wearing parts of the elevator system. Only genuine OEM parts and supplies used in the manufacture and installation of the original equipment shall be provided.

7. Contractor shall obtain written approval from the BART administrator prior to replacing parts.

8. Contractor shall provide and maintain up-to-date compete list of personnel who access the District assets. The list shall include names and 24-hour contact information, including phone numbers.

C. Trouble calls during maintenance period

1. For any trouble calls the District will notify the Contractor of the incident. The Contractor shall be on site with four hours. The Contractor shall notify the designated BART Elevator/Escalator Maintenance representative upon arrival to the site, and check out upon completion of the trouble call. BART personnel may observe the repairs or adjustments made by the Contractor’s personnel.

D. Elevator Access:

1. For routine maintenance, The Contractor shall request access to the elevator and coordinate access with the BART Elevator/Escalator Maintenance Department representative.

2. When routine maintenance is being performed, the Contractor shall be prepared to return the elevator to service upon request by a patron if it would take the Contractor 15 minutes or less to do so. If the Contractor cannot return the elevator to service in 15 minutes or less, then the Contractor shall assist the Patron in contacting the Station Agent for Assistance.

E. Work Hours for Maintenance:

1. Repairs required to return equipment to service shall be accomplished as soon as possible during revenue and non-revenue hours.

2. Routine maintenance, non-urgent repairs, and warranty work shall be performed on no more than one elevator at a time at a station or adjacent station. Routine maintenance shall not be performed during revenue peak hours. Routine maintenance may also be performed during non-revenue hours. Refer to the Contract Specification for a definition of revenue peak hours and non-revenue hours for the station.

F. Inspection during Maintenance Period:

1. Contractor shall perform systematic inspection of each elevator system every two weeks and perform adjustment and lubrication of elevator equipment when required as recommended by the manufacturer. Replace defective parts with new parts of same manufacture as required.
2. There will be an annual permit inspection schedule by and at the expense of the District.

3. BART will monitor Contractor’s work by whatever means are deemed necessary, including employing others to inspect and/or test the equipment condition and the maintenance work quality.

G. Elevator Shutdowns:

1. Should an elevator become inoperative, the Contractor’s service representative shall physically attend to the elevator within four hours of notification of a failure. If the failure occurs after 8:00 PM, the service representative shall be onsite no later than 7:30 AM the following Day. The schedule shall apply seven Days per week, 52 weeks per year. The elevator shall be returned to service as quickly as possible.

2. Should there be a failure to comply with above, time requirements, a penalty of $500 shall be assessed for each hour delay.

H. Final Service and Inspection:

1. Two weeks before expiration of the Maintenance Period, or extended maintenance as applicable, the equipment shall be lubricated, fully serviced, adjusted to the standards designated herein and safety devices and emergency service operation shall be checked. Contractor shall re-lamp elevator car light fixture and pit light fixtures. A complete inspection will be performed jointly by the Engineer or District representative and Contractor’s representative. All deficiencies shall be corrected. Any deficiencies not corrected shall result in the extension of the maintenance services until the deficiencies are corrected at no additional cost to the District.

I. Contractor will not be responsible for cleaning and repair of elevator car walls and hoistway entrances, except if service required is due to detective materials or improper installation. Service personnel shall clean oil and grease residue from maintenance or repair.

J. The Contractor’s technicians responding to trouble calls or performing Preventative Maintenance shall contact the designated BART Elevator/escalator Maintenance representative and provide the following information: worker’s name, date, arrival time, total time spent on site, parts inspected, adjustments made, parts replaced, and detailed description of the work done.

K. Keep a work log on each elevator with the following information: Worker’s name, date, time arrived, total time spent back in service time, parts inspected, adjustments and work done, and parts replaced. Every visit, regardless of purpose, shall be recorded in the log. The work logs will be regularly reviewed by the Engineer.

L. Chargeable Repairs: Contractor will not be responsible for the cost associated with trouble calls that are due to misuse, or accidents, or are otherwise not caused by the Contractor. Calls which result in adjustment of safety devices not accessible to the public will not be reimbursed. Contractor shall submit all documentation necessary to
prove that a particular trouble call should be a Chargeable Repair. Contractor shall submit all documentation necessary to justify the direct costs incurred for chargeable repairs and detail charges in accordance with the schedule of service prices submitted and approved by the Engineer prior to the start of the maintenance period.

1.13 RELIABILITY

A. Definitions:

1. Break-in Period: The initial period of operation of the elevator. There shall be only one break-in period for the elevator, regardless of maintenance or modification or other work done on the elevator before, during, or after the break-in period.

2. Failure: An incident which is corrected by replacing a part, resetting the unit, or making an adjustment. Exceptions to failure are conditions of misuse, vandalism, accidents or negligence not caused by the Contractor.

3. Incidents: An incident is any elevator stoppage, regardless of cause.

4. Pattern Failures: The occurrence of multiple independent failures of the same primary replaceable item or adjustment in identical or equivalent applications.

5. Reliability Demonstration Test (RDT): A test to determine a reliability-associated parameter, such as available operating time, within defined statistical risks or with a specific statistical confidence.

B. Requirements:

1. The Break-in Period shall begin after the installer has satisfactorily completed the elevator installation, obtained State operating permits and the Engineer has performed and approved substantial inspection of the elevator. The elevator shall be barricaded and operated continuously under no load condition for a minimum of 48 hours. Upon a continuous, 48-hour operation without incident, the barricades may be removed and the escalator may be put into service to be used by the public.

2. After the Break-in Period, the Reliability Demonstration Test (RDT) shall begin. The escalator shall operate up to full load under normal modes of operation in either direction and be able to provide minimum 96 percent reliability as determined by the following formula:

\[
\text{Percent Reliability} = \frac{T}{A}
\]

\(T\) = Actual aggregate operation time for the escalator, Downtime for scheduled preventive maintenance and incidents, which are not failures, shall not be deducted from the aggregate operation time.

\(A\) = Aggregate revenue operating time of the respective BART station, nominally 20 hours per day.
3. Contractor shall take corrective action to eliminate pattern failures, regardless of total operating time accumulated. The Contractor shall notify the District’s Engineer or designated Elevator/Escalator Maintenance representative that an elevator undergoing corrective maintenance is ready to be returned to service to ensure appropriate time tracking for the purpose of accurately tracking the reliability percentage by using formula above. Failure by the Contractor to report “returned to service” will result in lower reliability performance and will remain the responsibility of the Contractor.

C. Contractor shall:

1. Collect the data and document the results of the RDT, perform all calculation, and issue the results.

2. Review all failure incident reports to ensure that only pertinent failures are included in the test results.

3. Review the data the District at interim stages of the RDT and at the final stage, prior to issuing the results.

D. If the District determines that the RDT has fallen below the 96 percent goal for any consecutive 30 Day period, the Maintenance fee due to the Contractor for the 30 Day period shall be reduced by the following formula:

\[A = MF \times \text{Percent Reliability} \]

\[A = \text{Amount due to Contractor} \]

\[MF = \text{Monthly Maintenance Fee for one elevator} \]

\[\text{Percent Reliability} = \text{As calculated above} \]

E. Prepare and submit reliability and maintainability reports.

1.14 PERMITS

A. Refer to General Conditions Article 7.4, Permits and Licenses, for the Contractor’s responsibility to obtain and pay for necessary permits including permit to complete. Contractor shall submit any required drawings and design calculations to State of California Elevator Division and a copy to the Engineer. The Contractor shall pay for all Elevator Division’s inspections, as applicable including those occurring during the Maintenance Period.

PART 2 – PRODUCTS

2.01 GENERAL

A. The general system description for the elevators, which include elevator make and type, number of stops, car and hoistway door and operators configuration and design, controller type, dimension of car floor and enclosure shall be as indicated.
B. Weatherproofing: Metal surfaces shall be hot-dipped galvanized, except nonferrous metals and stainless steel. Machined and operational areas shall be protected from corrosion by applying a rust preventative compound, oil or grease. Refer to Article 2.12, Electrical Components, for related requirements.

2.02 MATERIALS

A. Sheet Steel: ASTM A1007/A1008M, uncoated, pickled.

B. Fasteners: All hardware, including nuts, bolts, washers, screws, and other fasteners shall be stainless steel throughout, including any concrete anchors. Provide all fasteners necessary for proper erection and assembly of work.

C. Stainless Steel: Type 316, unless Type 316 does not exist for a particular item. Type 304 may be used only as approved by the Engineer.

D. Structural Steel: ASTM A36 for car platform and sling. Hoistway entrances struts, headers, etc. shall be galvanized.

E. Aluminum: ASTM B209, B211, B221, and B308/B308M. ANSI 6061 or alloy and temper best suited for anodizing finish specified.

F. Engraving on stainless steel panels:
 1. Size: As indicated.
 2. Color: Backfill with black epoxy paint, except text and symbols for fire or emergency service shall be red epoxy paint.
 3. Typeface: Univers 65 or Helvetica.

G. Grout: Non-staining, nonshrink as specified in Section 03 61 11, Non-Shrink Grout, and appropriate to application:

2.03 FINISHES

A. Stainless Steel, Grade 316, Exposed to View by Public: Satin, vertical directional grain or as indicated, NAAMM AMP No. 4 finish. Sanding medium shall not deposit particles in the grain that are capable of rusting. Provide NAAM AMP No. 4 finish on stainless steel not exposed to view when indicated.

B. New cast or machined non-stainless metal parts, including sling, counterweight frames, sheaves, brackets, non-stainless steel, sub floor, and similar parts which are not exposed to view and not specified to be galvanized shall be cleaned, primed and painted as follows:
 1. After fabrication and immediately before shop painting, ferrous metalwork shall be power-tool cleaned in accordance with SSPC-SP-3 to remove mill scale, rust, grease, oil, and any other foreign matter. Welds shall be thoroughly wire brushed.
2. After power-tool cleaning and just before shop painting, ferrous metalwork shall be washed with solvent to remove dust and residue in accordance with SSPC-SP1. Metal work shall be coated with 100 percent Zinc Thermal Spray per AWS C2.3M/C2.23, NACE No. 12, SSPC-CS 23.00.

3. Immediately after cleaning and solvent washing, ferrous metalwork shall be shop painted with one coat of corrosion resistive metal primer and finish coat of gray enamel paint.

C. Pit floor and walls up to level of first landing shall be painted gray with the Epoxy Floor Paint System specified in Section 09 91 00, Painting.

D. Entire hoistway, except pit area, shall be painted white with Semi-Gloss Finish Paint System in accordance with Section 09 91 00, Painting, as applicable to substrate. Raceway and other pre-finished items shall be painted to match.

E. If not otherwise indicated on the Contract Drawings, Machine Room floor shall be painted gray with the Epoxy Floor Paint System specified in Section 09 91 00, Painting.

F. If not otherwise indicated on the Contract Drawings, the Machine Room walls and ceiling shall be painted white with Semi-Gloss Finish Paint System in accordance with Section 09 91 00, Painting, as applicable to substrate.

2.04 HOISTWAY CONSTRUCTION

A. Hoistway shall be constructed of non-combustible materials with the fire rating required to meet the applicable Codes requirements of the building but shall be a minimum of two-hour fire rated construction.

B. The top of the hoistway shall be enclosed and watertight.

C. The minimum vertical distance in the refuge area between the top of car enclosure and the overhead structure or other obstruction shall be not less than 60 inches when the car has reached its maximum upward movement.

D. Hoistway shall be vented with a louver of a minimum three square feet as indicated on the Contract Drawings. Refer to Section 08 90 00, Louvers and Vents.

E. Hoistway shall have a floor drain or sump with drain as indicated on the Contract Drawings. Drains shall be connected to the Station’s industrial waste line or as indicated on the Contract Drawings. Sump covers shall be of galvanized grating that is mounted flush with the floor. Grating shall be removable and have openings not to exceed one inch.

2.05 MACHINE ROOMS

A. Machine room and auxiliary machine spaces shall be sized to accommodate the elevator and related equipment with ample space for maintenance and replacement of all equipment located in the machine room. The machine room area shall be at
least 150 percent of the square footage required by NEII-1 or as indicated on the Contract Drawings.

B. Machine rooms shall be equipped with smoke detectors as specified in Section 28 31 00, Fire Detection and Alarm Systems. Detectors shall interface with the elevator controller via the main fire alarm panel.

C. Refer to the Contract Drawings for machine room ventilation or air conditioning provisions.

D. Refer to Section 10 40 00, Safety Specialties. Provide a rechargeable 10-pound, 4A-60B:C fire extinguisher with metal mounting bracket.

2.06 EQUIPMENT IN HOISTWAY AND MACHINE ROOM

A. Geared Traction Machine: Single worm geared traction type with motor, brake, worm, gear, drive shaft and gear case mounted in proper alignment on isolated heavy structural steel bedplate. Machine shall have ball or roller bearings, and meeting testing requirements without external cooling appurtenances. Run/Stop switch to be in close proximity to each drive. The machine shall be provided with an electromechanical brake. The brake shall be spring applied and electrically released. Swivel type brake shoes shall be applied to the braking surface simultaneously and with equal pressure by means of helical compression springs. The brake electromagnet shall be designed for quick release to provide smooth and gradual application of the brake shoes. Provide an indication to the controller that the brake has fully released, by means of a micro switch. Provide necessary circuitry and devices to provide an indication to the controller to disable power to the machine drive in the event the brake does not fully release and display the related fault. The brake setting and method of measurement shall be permanently marked on the driving machine. Braking surfaces shall be protected from leaking machine fluid.

B. Provide heavy duty AC motor, 480 Volt, three phase, with drip proof enclosure and heavy duty, specifically designed for Traction Elevators rated for minimum 120 starts per hour, continuous duty. Motor shall be high slip 10-13 percent for Station Elevators and low slip two to five percent for Parking Structure Elevators. Motor horsepower shall be minimum 15 horsepower with self-resetting internal thermal overload and speed encoder.

C. Guide rails: Contractor shall provide minimum 18.50 pounds/foot for the counterweight and main guide rails and necessary bracketing/supports

1. The guide rails shall be accurately machined standard elevator industry “T” section guide rails with tongue and grooved joints for the car and counterweight, weighing not less than that specified in the ASME A17.1.

2. Machined splice plates min. one and a half inches thick shall be used to form the rail joints. Each splice plate shall be located so it will not interfere with the brackets and clips and not coincide within 24 inches of any car guide rollers when car is stopped at any landing.
3. Guide rails shall extend from the pit floor to the underside of the machine room floor at the top of the hoistway. Extend rails to the overhead as close to the hoistway ceiling and/or the machine assembly and/or deflector sheaves, as set forth in ASME A17.1 Section 2.23.8. A galvanized structural steel channel mounted to pit floor shall support guide rails and buffer.

4. Guide rail sections shall not be welded together or welded to mounting brackets.

5. The maximum lateral deflection of elevator guide rails shall be one half (0.5) inch.

6. Bottom three feet of the guide rails from the pit floor and brackets shall be painted with anti-corrosive paint or epoxy.

7. Elevator pit ladder shall meet Cal/OSHA requirements.

D. Guide Shoes shall be of the heavy duty roller type guides that are rated for minimum load of 10,000 pounds. Each roller guide shall consist of, as a minimum, a set of three sound-reducing neoprene wheels with precision type ball bearings and held in contact with the rail surfaces by means of adjustable spring loaded devices. Roller guides shall run on dry, unlubricated guide rails. Top of car and all of the counterweight guides shall be fitted with guards. Roller guides shall be securely bolted to the car frame at top and bottom with stainless steel fasteners and shall be properly aligned to be plumb in respect to rail surface. Roller guides shall provide smooth and quiet elevator operation. Balance car to ensure equal roller guide pressure will not to exceed manufacturer’s recommendations. Provide a half inch minimum thickness retainer plates at the top and bottom of the car and counter weight frame. Nominal roller diameters shall be as follows:

<table>
<thead>
<tr>
<th>Car</th>
<th>Counterweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum diameter six (6) inches</td>
<td>Minimum diameter four (4) inches</td>
</tr>
</tbody>
</table>

E. Hoist and Governor Ropes: Size and number to ensure proper wearing qualities and performance. Minimum eight strands wound around hemp core. Preformed wire ropes shall be installed. Minimum size of hoist ropes shall be a half inch and governor ropes shall be three eighths inch.

F. Buffers: Buffers shall be of the spring type specifically designed for elevator applications and sized per code requirements. Buffers shall be supported by a galvanized structural steel channel that is mounted to pit floor.

G. Counterweight: Sectional metallic weights securely fastened in structural frame. Provide a half inch minimum thickness retainer plates at the top and bottom of the counterweight frames to span the guide rail machined surfaces for its full-finished distance. The elevator shall be suitably counterbalanced for smooth and efficient operation per Controller manufacturer’s recommendations. Cast iron or steel weights shall be contained in a steel frame equipped with roller guides. A minimum of two rods shall pass through from the top to the bottom member of the counterweight assembly and filler weights. The filler weights shall be restricted from movement in the frame assembly when proper counterbalance has been determined. The
counterweight assembly shall equal the weight of the complete elevator car plus approximately 40 percent of the rated elevator load or as determined by the Controller manufacturer. A counterweight guard shall be installed at the bottom of the hoistway, according to the applicable code sections. Provide intermediate support brackets on the counterweight guide rails, as set forth in ASME A17.1, Section 8.4.8. Provide the necessary number of brackets so that the counterweight frame shall be within two brackets at all times. Intermediate brackets shall be minimum five eighths inch thick by five inch wide material.

H. Safeties: Flexible guide clamp type shall be mounted on underside of the car frame.

I. Emergency Stop Switches: Provide emergency stop switches in hoistway pit and auxiliary machine spaces and located as required by State codes. Stop switches shall be heavy-duty watertight, red-colored, mushroom-type push/pull switch.

J. Hoistway Limits: Provide terminal and directional limit switches, access limit switches and final limit switches. Limit switches shall be heavy duty with NEMA 4 or 4X housings and heavy-duty mountings, fully adjustable plus/minus six inches minimum.

K. Ceiling height in the machinery room shall be a minimum of nine feet above finished floor.

2.07 HOISTWAY ENTRANCES AT ALL LEVELS

A. General: Fabricate finish work smooth with flush surfaces and free from warps dents, scratches, and buckles.

B. Hoistway doors shall include door unit frame, flush sills, strut angles, headers, hanger covers, fascia plates, toe guards, dust covers, and required hardware. Exposed surfaces shall be stainless steel. All structural steel shall be galvanized. All fasteners shall be type 316 stainless steel. Refer to Article 2.08, Car and Hoistway Doors, herein.

C. Frames: Fabricate from minimum 12-gage, type 316 stainless steel, No. 4 brush finish with side jambs in one continuous piece from sill to head section. Head and jamb fully welded mitered corner.

D. Front Return Panels: Provide full height, 12-gage, type 316 stainless steel No. 4 brush finish.

E. Hangers and Tracks: Provide heavy-duty hangers and tracks that are sheave type with minimum two-point suspension to support the heavy vision panel doors. Provide steel sheaves with ball or roller bearings with resilient sound-absorbing tires and adjustable upthrust, flanged groove tracks. All material shall have anti-corrosive treatment. Maximum load per hanger shall not exceed 100 pounds. Additional hangers shall be provided as required. Hanger bolts shall be a minimum one half inch in diameter.

F. Headers, Struts and Closer Angles required for entrance installation and door closer mechanism, manufactured from plate steel. Use full-length steel struts. Hanger
headers, minimum one-fourth inch thick material, extending from strut to strut with minimum three-eighths inch thick angles. All metal parts shall be galvanized.

G. Dust and Hanger Covers: Provide as required, 16-gage minimum, type 316 stainless steel, No. 4 finish. Hanger cover plates shall extend full length of door track at each landing. Provide key-hole slots at fastening points for easy removal of covers.

H. Fascia, Toe and Head Guards: Minimum 16-gage, type 316 stainless steel, No. 4 brush finish, reinforced.

I. Sills: Provide sills constructed of extruded nickel silver alloy with non-slip surfaces and grooves suitable for guides. Installed sills shall be continuous from strut to strut. Welded parts are not acceptable. Mount the sills with recessed, flat head stainless steel screws or hidden “T” type fasteners. Provide a 16 gage stainless steel plate to cover the exposed vertical face of the elevator door sills. Provide all support angles, levelers and necessary concrete filler under sill and grouting for a complete secure, level, and plumb installation. No plywood shall be used under the hoistway sills. Apply silicon caulk around all gaps and on top of the fasteners to prevent any liquid from seeping into the underlayment or hoistway edging angle. Support angle and levelers shall be galvanized or stainless steel. Sill shall be supported over its entire length and width.

2.08 CAR AND HOISTWAY DOORS

A. General: All hoistway and car elevator doors shall be stainless steel with vision panels.

B. Door Panels: Car and hoistway door construction shall be reinforced structural steel with minimum 14-gage Type 316 stainless steel, No. 4 brush finish cladding, flush design, rolled profile, rigid construction to ensure rigidity. Cladding shall wrap around all edges. The door panel assembly and related equipment shall be designed to withstand the force requirement of ASME A17.1.

1. Provide full-length neoprene astragals on meeting door faces.
2. Mount doors on structural header, not on car enclosure.
3. Provide non-vision side wings of type 316 stainless steel, No. 4 brush finish.
4. Use torsion spring mechanical closures; do not use weight closures.
5. Door mechanisms shall not be visible in vision panels.
6. Exposed vertical door corners shall be smooth and seamless.
7. Full height 12-gage stainless steel, fixed front return panels.
8. A liquid tight splash guard shall be provided to protect area behind, COP, between COP and door sills. Splash guards shall be 18-gage, 304 stainless steel, sealed at bottom and sides, and shall extend from floor to 48 inch min. above floor, both sides of door opening areas.
9. Provide rubber stops to limit travel of all doors in both directions.

C. Door protection: Refer to Article 2.09, Electronic Door Edge Sensor.

D. Door Guides: Door panels shall be guided at bottom with adjustable nonmetallic gibbs sliding in a smooth threshold groove. Provide a minimum of two gibbs per panel located one inch from each end. Gibs shall be secured with minimum two screws to bracket and bracket shall be secured to door with at least three stainless steel screws.

E. Vision Panels: Vision Panels shall be installed in such a way that vision panels on car and hoistway shall be aligned. Door vision panels shall be provided and installed in accordance with the following:

Vision Panel shall be minimum 10 inches wide and center mounted. The top of the vision panel shall be 60 inches above finish floor and the bottom shall be 18 inches above finish floor. The glass vision panels shall meet ANSI Z97.1 and CCR Title 8, Elevator Safety Order Section 3034 requirements.

1. Glass: Glass shall be ASTM C1048, Kind FT, Type I, Class 1, Quality q3, meeting ANSI Z97.1. The rating of the glass shall be visible in each panel. Lamination inner layer of 0.060 inch polyvinyl butyral. Both glass layers shall be tempered, clear, nine sixteenths inch total thickness and shall be coated with anti-graffiti clear film coating.

2. Glazing Setting Blocks and Spacers: ASTM C864, semi-hard neoprene or vinyl rubber, 70 to 90 Shore A hardness when tested in accordance with ASTM D2240, of width equal to thickness of glass and long enough to limit load on each block to 15 pounds per square inch gage. Minimum length of setting blocks shall be 3 inches.

3. Glazing Gaskets: Continuous, closed-cell, extruded neoprene manufactured for glazing in type of metal doors and frames. Color shall be black. Gaskets shall be capable of being compressed 40 percent of original size and shall have 100 percent recovery capability when tested in accordance with ASTM F36.

F. Hangers shall to be mounted to the doors with minimum one half inch diameter bolts. Maximum load per hanger shall not exceed 100 pounds, additional hangers shall be provided as required. All fastening shall be stainless steel. Finish of all door equipment shall be galvanized, or plated.

G. Door Operator: Door operator shall be heavy-duty, closed loop speed regulated, by G.A.L. Model MOVFR manufactured by GAL Inc., a Designated Matching Product. Structural support shall be independent of car enclosure. Door equipment and coverings shall be galvanized, or plated. Wire relating cables shall be stainless steel.

1. Test switches shall be provided for the set-up and calibration for opening, closing, nudging and speed zone. At least one hand-held programming tool shall be provided per elevator.
2.09 ELECTRONIC DOOR EDGE SENSOR

A. The door edge sensors shall be District Matching Product (DMP); “Panta 40 Plus” manufactured by Janus Elevator Products, Inc., and shall be installed in accordance with the manufacturer recommendation. Install the door edge sensors along the edge of elevator doors outside of the car door frame structures, minimum 6 mounting brackets.

B. Operation: The door edge sensor shall provide a full light curtain door protective system which does not rely on physical contact with, or the motion of, a person or object to inhibit door movement or initiate door reversal.

1. The system shall be able to detect a two and a half inches diameter rod introduced at any position within the door movement and between the height of one inch above sill level and three inches below the car doorjamb.

2. Detection of intrusion into the protected area shall cause the doors, if fully open, to be held in the open position and, if closing, to stop and reverse to fully open position.

3. The first intrusion during a stop at any landing shall cancel the normal dwell time and substitute a door protective system time delay that shall be adjustable between one to 60 seconds commencing with removal of the intrusion. If, during this period, a further intrusion occurs, upon its removal, the same delay period shall apply and this cycle shall continue until traffic through the doorway ceases.

4. The doors shall commence to close immediately after the expiration of the determined period once the last intrusion has been removed.

5. If doors are prevented from closing for an adjustable period of 15 to 45 seconds, they shall proceed to close at reduced speed and a nagging buzzer within 75-85 decibels shall sound. Door closing force shall not exceed two and a half pounds-force when door re-opening device is not in operation.

6. If the system incorporates light beams, the light source shall not require the use of incandescent filament lamps but shall operate in the invisible portion of the light spectrum.

2.10 CAR ENCLOSURE

A. General: Provide complete car with appurtenances, appointments, and finishes as indicated. Finish work shall have smooth surfaces and free of buckles, scratches, dents, warps, squeaks, and rattles. Joints shall be light proof. Fasteners shall not be visible except as indicated.

B. Car Walls: Car walls shall be Grade 316 stainless steel, no less than 14 gauge Type 316, NAAMM AMP 503 No. 4 finish, and reinforced structurally at least every 30 inches. Surfaces of the floor support, door guides, and wall panels up to 36 inches above platform shall be cleaned then treated with metal primer and rust prevention compound.
1. Vertical panels shall be reinforced to a minimum height of one foot by a steel plate with a thickness of one sixteenth inch or greater.

2. Reinforce bottom of car wall and underside of door with minimum three by three by one fourth inch galvanized steel angles.

3. There shall be a minimum three-inch cove base around the entire perimeter of the cab, including the door walls. The radius of the coving shall be a minimum of one and a half inches.

4. Wood shall not be used anywhere in the elevator car.

5. Vision panels shall be installed in car walls to align with hoistway walls. An additional handrail shall be provided in front of vision panel if the vision panel is on the side wall. Vision panels shall be constructed in accordance with Article 2.08.E.

C. Contractor shall furnish and install flooring in accordance with Article 2.11, Elevator Floor and Platform.

D. Car Sill: As specified in Article 2.07, Hoistway Entrances at All Levels under Sills. Car sill shall be slightly higher than the finish floor, but not exceed one sixteenth of an inch. Sill and door pocket behind fully retracted door position shall have a smooth, upward curved surface to direct liquid back towards center of sill. Area of sill and door tracks behind door shall be accessible by a half inch diameter steam wand for cleaning and sanitation.

E. Ceiling: Unitized stainless steel construction with emergency exit in accordance with regulatory requirements.

F. Car Ventilation: For all elevator cars, Contractor shall provide exhaust fan with sound isolation mounted on car roof or as per manufacturer’s recommendation. Fan shall be two-speed squirrel-cage exhaust blower rated 200 cubic feet per minute, 120 Vac. Fan speed shall be selected by key switch (keyed to EX513) located in the maintenance panel in the Car Operating Panel.

G. Motion sensor: Contractor’s attention is directed to Article 2.16, Recessed Motion Sensing Unit.

H. Car Lighting: Illumination level inside the car shall be 10 foot-candle measured at the floor level. The related work shall be performed in accordance with Section 26 50 00, Lighting.

I. Emergency Lighting: Provide emergency lighting in accordance with CCR Title 8 and with a minimum five foot-candle level. Provide a charger-inverter battery unit with alarm bell mounted on top of car. The charger-inverter battery unit shall be gel-celled batteries providing 24 volts. Battery shall be sealed and have 10 year service life. The alarm bell shall be a six inch gong and shall be mounted to the battery pack and meet the ANSI code requirements for audibility. The unit shall include a pilot light and test switch, off-on switch, and a terminal strip. Input voltage shall be 115 Vac continuous and the output voltage shall be 115 Vac with a maximum 100 watts.
capacity. Loads shall include the car emergency lighting, alarm bell, and the transformer unit for the CCTV camera. Upon outage of normal power, the unit shall, within five seconds, light two lamps of the normal car lighting fixtures. The unit shall have sufficient capacity to keep the lights in continuous operation for four hours including the alarm and CCTV camera for one hour. Provide a readily accessible switch mounted in the service cabinet for testing the unit.

J. Car Operating Panel (COP): Elevators shall have 2 COPs, one located on each side of the door. Each COP shall be a stainless steel panel, with heavy duty, stainless steel spring-loaded hinges or continuous piano hinge that is secured with flush barrel-type keyed latches. Hinged Car Operating Panel when opened shall have a minimum three-inch clearance from the finished floor. Contractor’s attention shall be directed to Article 2.15, Signals and Operating Fixtures, for related work.

K. All conduits and wires shall enter elevator car from top down. No penetration through the platform are allowed.

L. Car Sill: As specified in Article 2.07, Hoistway Entrances at All Levels, under Sills. Car sill shall be slightly higher than the finish floor, but shall not exceed one sixteenth of an inch.

M. Handrails: Handrails shall be Grade 316 stainless steel, one and a half inch tube or bar. Contractor shall also provide heavy duty Grade 316 stainless steel mounting brackets, fasteners, and other hardware. Fastening shall be three eighths inch minimum in diameter. Each handrail shall support a minimum load of 200 pounds.

N. Car shall be sound isolated from car frame.

O. Car Camera: Refer to Article 2.17, Cameras, herein.

P. If the Engineer requests, car enclosure shall be pre-assembled at the factory prior to shipment for the Engineer’s inspection.

2.11 ELEVATOR FLOOR AND PLATFORM

A. Car Frame and Platform: Provide structural carbon steel frame with anti-corrosion primer and paint with gray finish color. Isolate platform from car frame by rubber pads and provide jacking bolts for pad replacement.

1. Allow recess for installation of finish flooring. Design platform and floor for 500 pounds concentrated live load, and 50 pounds per square foot.

B. Subfloor: Shall be constructed in accordance with BART Standard Drawing MS39, Floor and Wall Details. The stainless steel floor pan shall be 11 gage and extending the entire floor area, including the cove base. Seams shall be staggered so as to not coincide. The floor pan shall be sectioned where required and constructed with watertight seams, fastened to the substrate with stainless flat head screws four inches on center from pan joints and 16 inches center to center. The floor pan fasteners shall be caulked, heads ground flush with pan surfaces and indented pan fasteners shall be covered with leveling compound. Concealed areas behind door returns shall be caulked.
C. Finish Flooring: Refer to Section 09 67 70, Elevator Spray-On Flooring.

D. Wood products will not be permitted anywhere in the elevator car or below it.

E. All gaps and running openings where the platform structure meets the surface of the finished openings shall be within the tolerances specified in the Elevator Safety Orders.

F. Platform floor shall slope so that one quart of water poured onto the wall shall flow towards the car door or car center so that liquid on the floor will not accumulate in the corners or near the floor perimeter of the car. The specified finish floor and stainless steel floor pan shall be constructed with watertight seams. There shall be no ridges or tripping hazards.

2.12 ELECTRICAL COMPONENTS

A. General: Electrical components shall comply with NFPA 70 and CCR, Title 24, Part 3, California Electrical Code. All wiring and conduit work shall be performed in accordance with Section 20 70 26, Common Materials and Methods for Electrical Systems, and Section 26 05 24, Low and Medium Voltage Wires and Cables, unless stated herein.

B. Weatherproofing: Electrical enclosures, penetrations and wiring shall be waterproof, NEMA 4 or 4X for Station Elevators and NEMA Type 4 for Parking Structure Elevators, unless otherwise specified. Wiring shall be in galvanized rigid steel (GRS) conduit with watertight fittings, except otherwise noted.

C. Raceways:

1. Fittings: Provide watertight fittings and hubs for all raceways and enclosures.

2. Provide mechanical protection for lighting fixtures on top and bottom of car, and in the elevator pit. Light fixtures shall be separately switched.

3. Raceways and conduits in hoistway shall be exposed. All conduits shall be galvanized rigid steel and minimum three-fourths inch. Liquid-tight flexible conduit may be routed to fixtures and switches, but shall not exceed 18 inches in length. Main hoistway raceway shall be hinged, NEMA type 12 wireway with zinc plated or stainless steel quick release hatches. Raceway joints shall be gasketed. Raceways shall be powder coated inside and out.

4. All terminal junction boxes in the hoistway and machine room shall be stainless steel, NEMA 4X. Pull boxes shall be powder coated steel enclosures, NEMA 12 or 4 for Station Elevators and NEMA 12 or 4X for Parking Structure Elevators.

5. Electrical metallic tubing (EMT) is not permitted for elevator related work.

6. Conduits shall be routed along walls and ceilings.
D. Electrical Wiring:

1. Wiring shall be color coded and identified with permanent imprinted embossed sleeves at all terminations throughout, including controller and junction boxes. Terminal strips shall be identified with unique numbering.

2. Conductors: Provide stranded copper conductors throughout, with individual wire color coded and/or labeled. Minimum wire size shall be 18 AWG. Conductors shall be designated uniformly throughout the system.

3. External connections to the equipment on each controller shall be made by means of approved cable thimbles or solderless cable lugs or both depending on the current carried (Amps) as approved by the Engineer.

4. Label each terminal and spares as they correspond to the controller schematic. Connections shall use insulated crimp connectors on terminal blocks located in control cabinets and junction boxes. The crimper shall be comparable to Panduit model CT-550 or equal. Do not use splices or similar connections in any wiring except at terminal blocks. No more than three wires per terminal shall be allowed. Provide anti-corrosion protection compound on all high current connections throughout the system using product comparable to Thomas & Betts #CP-16 or equal. All terminations shall be labeled.

5. Do not parallel conductors to increase current carrying capacity.

6. Do not use armored flexible metal conduit as grounding conductor.

7. Perform grounding of the elevator equipment in accordance with the manufacturer’s instructions.

8. Provide dedicated conduits for the following circuits:
 a. Main power from the disconnect to the controller
 b. Motor power from the controller to the motor
 c. Speed encoder to the controller

9. All door interlock wiring shall be heat resistant and shall be continuous without splices or terminations to or from controller.

E. Traveling Cables:

1. Provide two traveling cables between car and the controller via the “half-way box” in the hoistway. The steel support cable shall be flexible or extra-flexible, preformed, galvanized steel wire rope support strand. The steel core shall be insulated with polyvinyl chloride and cotton braided. An overall jacket of polyvinyl chloride (PVC) shall provide a smooth, flexible, abrasion-resistant covering. Cable shall comply with the flame test requirements in Paragraphs 1060.1-1060.9 of UL 1581 and shall be CSA FT-1 flame rated. The insulated conductors shall be soft annealed; bunched stranded, bare copper complies with ASTM B3 and B174. The conductors shall be insulated with a high quality 60
degrees Celsius PVC and shall be rated at 300 Volts in accordance with the requirements of UL62, CSA C22.2 No.49 and NEC Articles 400 and 620. Provide a heavy duty, single eye, closed mesh multi-weave, stainless steel wire grip to support the traveling cable on both ends and properly anchor to relieve strain on individual conductors. Provide details of the cable attachments on each end. Protect cables from rubbing against hoistway or car parts.

2. One traveling cable (for power and control circuits) shall be continuous from elevator car to the controller in the elevator machine room. Provide a minimum of 10 spare conductors of minimum #18 AWG and two spare conductors of #14 AWG, which shall be terminated at both ends to a terminal block.

3. The second traveling cable (for communication circuits and CCTV) shall be continuous from the car to the Communications Interface Cabinet in the elevator machine room via the halfway box. The following cables shall be provided:
 a. Minimum of two pair spare #22 AWG communication conductors terminated to “Krone” style termination blocks.
 b. Minimum of one pair spare #14 AWG conductors terminated to terminal blocks.
 c. Minimum two coaxial cables. The minimum cable count shall be increased to include one spare terminated to feed-through coaxial BNC connectors.
 d. One six fiber cable terminated to fiber patch panel with “LC” style connectors. All cables shall be terminated at both ends. Route the coaxial and optical fiber cables and communication circuits in conduit to the Train Control Room or Communication Room.

4. The coaxial cable shall be 75-ohm exhibiting the characteristics of an RG6 and incorporate the added mechanical properties of a composite copper and copper-covered steel inner conductor, the deformation resistance of a cellular polypropylene dielectric, and a combination foil tape and copper braid for 100 percent shield coverage.

5. Communication circuits shall be a minimum one pair, #14 AWG and six shielded twisted pair, #22 AWG, soft-annealed, bare copper cable with a non-insulated drain wire. The assembly shall be covered with an overall colored nylon or PVC jacket.
 a. Multimode fiber optic cable shall be OM4 cable, or approved equal compliant to the IEC 60793-2-10, Type A1a.3 Fiber and TIA/EIA-492AAAD standard.
 b. 50/125 micron tight-buffered multimode optical fiber covered with high-strength aramid yarn and jacketed with flame retardant polyvinyl chloride.
 c. Operating Wavelength and Bandwidth: 160 MHz-km at 850 nanometers and 500Mhz-km at 1300 nanometers.
 d. Attenuation at 850 nanometers: 3.75 decibels per kilometer maximum.
 e. Attenuation at 1300 nanometers: 1.00 decibels per kilometer maximum.
f. Core diameter: 50 micrometers plus or minus 3.0 micrometers optimized for 550 meters.

g. Cladding diameter: 125.0 micrometers plus or minus 2.0 micrometers.

h. Optical Performance: The attenuation shall be measured in accordance with EIA TIA-455-61. The bandwidth shall be measured in accordance with EIA TIA-455-30 or EIA TIA-455-51.

i. Mean Cycles Between Failures (MCBF) of 40,000 for less the 2 decibels loss.

F. Communications Interface Cabinet (CIC): Provide one or more NEMA 12, powder coated steel junction boxes mounted in a secure location where the District’s authorized personnel can access.

1. The cabinet shall be equipped with a 115VAC, 15A breaker connected to four fused terminals and four auxiliary outlets.

2. The cabinet shall terminate the communication and control circuits that are routed between the elevator controllers and other equipment and shall include but not be limited to circuits such as: fire alarm, station agent booth controls and indication, CCTV, emergency phone, remote monitoring signals, and seismic switch.

3. Terminations shall be on a DIN rail mounted terminal strip unless specified otherwise herein, with each termination labeled. System circuits shall be grouped together on separate terminal boards or separated by two spare terminals between different systems.

4. Provide feed-through coaxial BNC connectors mounted on a L-shape channel inside the junction box.

5. Provide conduit from CIC to train control room for communication cables as specified in Contract Drawings.

G. Main Disconnect Device: Provide a heavy-duty fused safety disconnect switch or a circuit breaker capable of being locked in the “OFF” position for each elevator in the machine room. The safety switch shall be sized for the total motor and controller electrical loads. The disconnect shall incorporate a micro switch so that when the disconnect is opened, the lowering device does not operate. The disconnect shall be located adjacent to the machine room door.

H. Car Inspection Station: Provide a car top inspection station to operate the car from the top. The inspection station shall include control switches for up, down, run, inspect, and stop and shall include an audible and visual alarm for emergency service. Inspection station shall also include a gasket sealed light fixture with a 25-Watt compact fluorescent lamp with wire guard, glass globe and switch and provide a 20A, 120V GFCI duplex receptacle with weather-resistant cover and flip-lids.

I. Work Lights and Convenience Outlets: Provide the following:
1. Top of car: 15 Amp, 120 Vac, GFCI duplex receptacle on car top for CCTV camera power supply in weather-resistant outlet box with flip-lids.

2. Bottom of car: Gasket sealed light fixture with a 25-Watt compact fluorescent lamp with wire guard, glass globe and switch and a 20A, 120V GFCI duplex receptacle with weather-resistant cover and flip-lids. Fixture shall be accessible from the lowest hoistway landing.

3. Inside car – 15 Amps, 120 Vac, GFCI duplex receptacle in the car service panel.

4. Hoistway – At the top of the hoistway and in the pit, provide a gasketed, sealed, 48 inch long light fixture with a lamp with wire guard and switch. Light switches shall operate both hoistway light fixtures and be enclosed in weatherproof box with flip-lids. Provide in hoistway pit a minimum of two duplex receptacles (20 Amps, 120 Vac) with GFCI protection in weather-resistant outlet box with flip-lids. Receptacles at the elevator pit shall be installed 36 inches above the pit floor.

5. Elevator Machine Room - Provide a minimum of two duplex receptacles (20 Amp, 120 Vac).

J. Provide the necessary red lockable safety switches to isolate 120 Volt power for auxiliary systems in the elevator car, such as car lighting, cameras and outlets. Mount switches in the elevator machine room adjacent to the controller. At the switches, label the power source and function for each switch.

K. Main Circuit Breaker: If a sprinkler system is installed in the hoistway 24 inches above pit floor or machine room, then the main 480 Volt circuit breaker shall be supplied with a shunt trip feature to isolate the main power supply to the elevator prior to the activation of the fire sprinklers. The shunt trip shall be activated by heat detectors in the machine room and hoistway by means of the main fire alarm panel.

2.13 CONTROLLER

A. General: The work of this section shall be performed in accordance with Section 20 70 26, Common Materials and Methods for Electrical Systems. The incoming AC main feed shall have a line reactor or line conditioner.

B. Controller: The programmable controller shall be a non-proprietary, micro-processor driven, Motion 4000, DMP, for electric traction elevators. Controller shall be equipped, at a minimum, with the following features:

1. Computer controlled motion of the elevator including acceleration, top speed deceleration, and two-way leveling.

2. Serial microprocessor cart-top and COP boards.

3. Fire fighter’s service phase 1 and 2.

4. Hall board serial link.
5. Door operating circuitry for door operations.
7. Regenerative drive.
8. Load weighing.
10. Rope gripper.
12. Isolation transformer.
13. Line conditioner.
14. AC motor drive package.

C. Controller Panel: The controller panel shall be provided with a date pocket made of high impact thermoplastic mounted behind the door panel with three point latches and lockable. The controller cabinets shall be NEMA 4X with minimum eight-inches floor stands and provided with the technical data, instruction manuals, and other related materials about the controller enclosed therein. Provide two hand-held programming tools per facility.

D. Refer to Article 1.08, Design and Operation Requirements, under Elevator Controller, for operational requirements.

E. Each controller shall generate external indicating signals required by the remote monitoring system. Provide a terminal block in the controller cabinet and hard wire the remote monitoring system events’ list. These event indicating signals shall be available from the termination points, i.e., dry RMS contact relay, such that the specified elevator fault and status event data can be automatically received by the existing District’s Remote Escalator/Elevator Central Monitoring System (EERMS).

2.14 REMOTE MONITORING SYSTEM

A. The Contractor shall provide the signals to report any failures or out of service conditions to the existing District’s Escalator/Elevator Remote Monitoring System. The existing EERMS was developed and is owned by the District. The EERMS communicates with the elevator controller located in the Communications Interface Cabinet.

B. The Communications Interface Cabinet shall be equipped with Designated Matching Products, Allen Bradley DeviceNet LDX module, Model 1790D-T8BV8B 8 Universal In, 8 Source Out with screw-clamp and Module 1790D-T16BVDX 16 Universal In Expansion Block Screw-clamp and 25 post terminal strip. A 25 conductor cable shall be provided between the controller and interface cabinets for the sole use of the EERMS. Isolation relays for the station agent’s elevator controls and indications shall
be provided inside the Communications Interface Cabinet. The EERMS shall be installed and wired according to the Contract Drawings. Provide a Category 6 network cable and DeviceNet thick cable and a dedicated conduit from the Communications Interface Cabinet to the Train Control Room or Auxiliary Communication Room in the station as indicated on the Contract Drawing.

C. Fault and Event List: The controller shall provide the following signals to the DeviceNet modules. These signals shall be reported instantaneously as the controller responds to the initial signal within the elevator system. In the event a monitored condition cannot be determined directly from the controller, the Contractor shall provide the necessary sensor device. The following safety circuits and conditions (“Events List”) shall be established for reporting.

1. Door Lock
2. Loss of Power
3. Safety Circuit
4. Emergency Stop Button
5. Emergency Service (Fire Alarm or Earthquake)
6. Car at Top Landing
7. Car at Middle Landing (If applicable). If more than three landings, parallel all intermediate floors and connect as Middle.
8. Car at Bottom Landing
9. In Service (ISV and ISRT signals in parallel)
10. Spare
11. Spare
12. Car Shutdown by Agent
13. Car Occupied
14. Mechanic On-Site (door switch and ISV signal)

2.15 SIGNALS AND OPERATING FIXTURES

A. General: Contractor shall provide fixtures and signals as follows, test complete system, correct any deficiencies in wiring and function and make complete system fully functional. Location and arrangement of fixtures and signs shall comply with the ADA and other code requirements.
B. Push Buttons:

1. Provide stainless steel, vandal resistant push buttons for each landing, door open, door close, car alarm and emergency phone call. Metal button top surface shall be flat and raised one eighth of an inch from surface. Metal buttons for hall call shall be through-engraved with illuminated directional arrows. An illuminated halo shall surround the push buttons. Halos surrounding the alarm and phone buttons shall be red. Button illumination shall be long-life, standard wattage LED. Push buttons for all car and hall, alarm and hands-free phone shall be Innovation Industries Type PB 30 a Designated Match Product (DMP). Push button assembly for non-illuminated functions, door close and open shall be Innovation Industries Type PB-20, a Designated Matching Product (DMP).

2. Operation of hall call button shall cause button to illuminate until car arrives. Operation of car call button shall cause button to illuminate until car reaches other landing.

C. Car Operating Panel (COP):

1. Refer to BFS Standard Drawings for layout and details.

2. COP Faceplates: The faceplate shall be stainless steel, No. 4 finish, one-eighth inch minimum thickness, flush mounted.

3. COP Etchings: Except for pushbutton markings, all text shall be etched in faceplate and back-filled with black paint. Text related to the fire service shall be back filled with red paint. Lettering shall be as large as possible, but a minimum of 1/4 inch, unless otherwise indicated.

 a. Fire Service II instructions shall be etched in red lettering.

 b. The elevator number shall be etched into the faceplate with minimum one half inch, black filled lettering. Elevator identification shall include the Station number for example “A20, Elevator No. 34”. The correct elevator number will be assigned by the Engineer.

 c. “No Smoking” shall be etched with minimum one inch, red lettering.

 d. Elevator capacity shall be etched in black lettering.

4. COP Nameplates: Provide raised Braille Grade II, standard alphabetical characters for numerals or symbols as indicated to the left of the operating buttons and devices used by the public, in compliance with the Americans with Disabilities Act. Raised characters shall be white metal on black background without borderline on edges for Station Elevators and with borderline on edges for Parking Structure Elevators. Braille plates shall be surface mounted on control panel with concealed mechanical fasteners.

5. Fastening shall be flush, stainless steel tamper-proof screws of material matching faceplates.
6. Car alarm button: Provide dry contact for alarm initiation to Station Agent’s Booth Annunciation console. Activation of alarm button shall illuminate button, as well as activate car alarm bell.

7. Car Position Indicators: Contractor shall provide a digital programmable position indicator in the Car Operating Panel. The displayed landings shall correlate with the push button nameplates and provide a directional arrow that shall be illuminated only while moving.

8. Exposed key switches shall be provide for the stop switch only. See Article 2.15G. herein for key type.

9. Door shall have a permit holder with a minimum display window size of eight and three quarter (8.75) inches wide and four and a half (4.5) inches high, per standard Drawing No. AS08 Elevator Car Operating Panel Details.

D. Service Cabinets: The Contractor shall provide a service cabinet in the Car Operating Panel. The service cabinet shall be behind a minimum 16-gauge stainless steel hinged door with gasket seal. Keying shall be as designated by the Engineer. The service cabinet shall be mounted with hairline joints to car wall surface and have no unfilled openings. The service cabinet shall provide the following:

1. Inspection Service key switch, EX514
2. Independent Service key switch, EX513
3. Car light on/off key switch, EX513
4. Motion Sensor mode key switch, EX513
5. Fan Speed high, off, low key switch, EX513
6. Emergency Light illuminated test button
7. Duplex GFI receptacle
8. Fire service panel and Fire Service keying all EX515.

E. Emergency Car Hands Free Telephone: Contractor shall furnish, install and test hands free telephone as required by Section 27 30 01, Telephone Systems. Provide all work necessary to install the system to satisfactory operation.

1. Telephone panel shall include a text and Braille emergency telephone nameplate.

F. Hall Fixtures.

1. Chimes: Provide single chime for up and double chime for down direction. Chime volume shall be at least 75 decibels measured five feet from the hoistway door.
2. Hall lantern shall illuminate when car arrives. Green for up, and red for down. Provide vandal resistant, long-life LED directional lanterns with stainless steel
faceplate for Station Elevators. Provide extruded white, long-life LED directional lanterns with stainless steel faceplate for Parking Structure Elevators. Provide both “up” (one signal) and “down” (two signals) arrow-shape signals at landings of two-way travel. Light extinguishes when doors close. Lanterns shall not be mounted in the doorjamb.

3. Hall Call Panel: Provide hall call push buttons at each landing as specified herein under “Push Buttons”. Mount in a minimum one-eighth inch thick stainless steel faceplate. Surface mount faceplate with tamper proof fasteners. Hall call stations shall be located on right side of hoistway entrances at single elevator locations and be centered between entrances at group of elevators. Hall calls shall be identified with “Elevator Call” labels below the button. Labels shall include Braille lettering. Main floor hall call panel shall be equipped with fire service key switch and instructions. (Refer to Article 2.15G, Keys and Key-Operated Switches, for specifications for key switch.) Hall call panels at each level shall have the required “do not use in case of fire” instructions. All emergency instructions shall be etched in stainless steel faceplate and back-filled with red epoxy paint. Wording as approved by the applicable Fire Marshal. Pictorials shall be supplied with wording.

G. Keys and Key-Operated Switches: Keys in the car and at hoistway entrance shall be round barrel, Fort Lock EX series keys to match District standard keys. The Engineer will provide specific key assignment. Key-operated switches shall be in compliance with regulatory requirements. Coordinate keyway and keying requirements with the Engineer. Keying shall be compatible with the existing BART lock system. BART keys for key operated switches and locks to be GEM, Fort lock, Chicago, barrel keys. Fire recall key-operated switch shall be on integral hall call fixture at Main floor.

H. Station Agent’s Booth Elevator Monitoring and Control (SABEMC): SABEMC is part of the station SCADA and station agent booth panel. Contractor shall provide signal wires specified in Article 1.08 from the elevator controller to the DeviceNet module in the CIC. Provide a thick DeviceNet cable from the CIC to the SCADA cabinet located in the train control room. Provide conduits and conductors to route required elevator indications and controls to the stations agent’s booth. Conductors for these signals shall be rated for at least 300 Volts, shall have at least four spare conductors, and shall be routed in a dedicated conduit to the station agents booth. Refer to the District Technical Manual – SCADA System Function Description.

2.16 RECESSED MOTION SENSING UNIT

A. The motion sensor shall be the District Designated Matching Product (DMP), CI-200, Version 2, 360o PIR occupancy sensor as manufactured by The Watt Stopper, Santa Clara, CA 95050. The motion sensor unit shall be recessed into the ceiling and routing of the control cable shall be in accordance with the Contract drawings. Provide a mounting bracket flush to the ceiling for the motion detector unit. The motion detector shall be located and adjusted so that movement of the doors does not generate a false occupancy. Provide the 120 Vac-power supply to the power pack unit of the motion detector.

B. Programmed Operation: If after a programmable length of time, of 5 to 90 seconds an elevator car call has not been activated and the sensor detects elevator car
occupancy, the car shall be programmable to proceed with either one of two courses of action. The choice of action shall be selectable by the motion detector key switch in the service panel on the Car Operating Panel. The logic and circuitry of this alarm shall be incorporated into the controller circuit. Any auxiliary relay contact required to accomplish this feature shall be provided. This circuit shall be depicted in the schematic diagram of the controller. All occupancies, regardless of operation, shall be reported to the Station Agent’s Booth.

C. Automatic Car Call Mode: Upon occupancy detection, the elevator shall automatically generate a car call to the opposite floor or next floor if a car call is not activated within an adjustable time of five to 30 seconds.

D. Nuisance Occupancy Mode: If an occupancy is detected without a car call for an adjustable time of five to 30 seconds, then the doors shall reopen and remain open with audible alarm until a car call or hall call is generated or the car is vacated.

2.17 CAMERAS

A. General: Provide cameras as specified in Section 28 41 29, Closed Circuit Television Systems. Camera circuits shall be routed through the Communications Interface Cabinet in the machine room and to the Train Control Room or Communications Room via a dedicated CCTV conduit.

B. Car camera: A camera shall be mounted in the ceiling corner on the front wall opposite of the side of the main Car Operating Panel. The camera shall be adjusted to observe patrons operating the main Car Operating Panel. The camera shall be housed in a vandal resistant enclosure.

C. Elevator Entrance Cameras: A camera shall be provided for each elevator entrance. Cameras shall be located at least eight feet above the finish floor and adjusted to view the entire entrance. Outdoor locations shall have a waterproof enclosure.

2.18 SIGNS

A. General: Hoistway and car signs shall be stainless steel plates with black backgrounds and raised white lettering and Braille symbols with raised white borders, unless otherwise specified. Braille lettering shall be CA Grade II, comply with the Americans with Disabilities Act and shall be located below alphabetical characters, numeral, or symbols. Signs shall be on separate plates flush-mounted with hairline joints and concealed mechanical fasteners in cars and surface-mounted with tamper-proof fasteners at elevator entrance locations.

B. Provide stainless steel signs with Braille indicating landing identification on both sides of the door jamb at every landing. Signs shall have black background and white lettering. Lettering shall be two inches in height and centered 60 inches above doorsill. Signs shall be surface-mounted with dimensions of 4 inches by 4 inches with corners of 1/16 inch radius.

C. Provide Star of Life Signs on each side of doorjamb at the main landing. Signs shall be raised blue lettering and standard star of life symbol on a white background.
D. Refer to “Hall Call Panel” under Article 2.15, Signals and Operating Fixtures, herein for requirements for “Elevator Call” signs with Braille at each hall call station.

E. Provide “Station Agent Call” sign with Braille on hands-free white courtesy phones located near elevator entrances to avoid confusion between hall call stations.

F. Provide black laminated plastic sign with one-and-a-half-inch lettering centered on each hoistway entrance header indicating the elevator number. Sign shall be without Braille and abbreviated as the following: “A20, ELEV. 33”.

2.19 VIBRATION ABSORPTION MOUNTS

A. Vibration Isolation: Minimum two-inch thick vibration-absorption mounts, designed to effectively prevent the transmission of vibrations to the structure, and thereby eliminate the sources of structure-borne noise resulting from the elevator system. Indicate vibration isolation material on all drawings.

PART 3 – EXECUTION

3.01 PREPARATION

A. Hoistway: Examine the hoistway and supporting structure, and the conditions under which the elevator work is to be installed. Do not proceed with elevator installations until unsuitable conditions have been corrected. Hoistway pit shall be painted prior to installation of elevator equipment.

B. Electrical: Examine areas to receive elevators and verify that electrical rough-in is correct.

C. Machine Room walls and floor shall be painted prior to installation of elevator equipment.

D. Confirm that applicable submittals have been approved and applicable permits obtained prior to installation.

3.02 INSTALLATION

A. Welded Construction: Provide welded connections for installation of elevator work where bolted connections are not required for subsequent removal or for normal operation, adjustments, inspection, maintenance and replacement of worn parts.

B. Vibration Isolation: Mount rotating and vibrating elevator equipment and components on vibration-absorption mounts.

C. Lubricate operating parts of systems as recommended by manufacturers.

D. Alignment: Coordinate installation of hoistway entrances with installation of elevator guides rails for accurate alignment of entrance with car.
1. Adjust sills and doors to provide smooth, trouble free operation.

2. Ensure guide rails plumb and parallel with maximum deviation from rail center-line of one-sixteenth inch per floor, noncumulative.

3. Install buffers with required blocking and supports.

4. Grout sills with non-shrink grout. Set units accurately aligned with finished floor at landings.

5. Mount sill plate with concealed fasteners.

6. Field repair damaged coatings and wrappings.

E. Controller: External connections to the equipment on each controller shall be made by means of approved cable thimbles or solderless cable lugs, or both, depending on the current to be carried.

F. Balance car to ensure equal guide shoe pressure on all shoes. Do not exceed manufacturer’s recommendations.

G. Coordinate with the Engineer to install and test connections between the elevator and the train control room, communications room, and station agent booth as needed.

H. Controller shall have 6 inches minimum clearance on all four sides (not including front and back).

3.03 FIELD QUALITY CONTROL

A. General

1. Notify the Engineer at least five Days prior to each scheduled test. Perform testing in the presence of the Engineer.

2. Regulatory Agencies Inspection: Upon completion of the elevator, Contractor is responsible to provide instruments, weights and personnel to conduct tests required by regulatory agencies. Representatives of the regulatory agencies and the Engineer shall witness tests.

3. Overall elevator testing shall be performed after installation.

4. Contractor shall perform safety tests on the elevator without load. Tests shall be recorded in detail and submitted to the Engineer for approval.

B. Acceptance Testing Requirement

1. The emergency phone, seismic switch, and fire service operation shall be tested prior to the State Inspection to ensure that these devices are communicating as intended with the BART operating system.
2. A one-hour heat and run test with full load shall be performed prior to State inspection. Performance and leveling tests shall be made before and after heat and run test. Heat and run test shall not exceed manufacturer’s recommendations.

3. All the Station Agent’s Booth signals and functions, and Remote Monitoring System signals and functions shall be tested.

4. Contractor shall conduct NEII-1 performance tests with its own calibrated equipment as approved by the Engineer. Test results shall meet or exceed NEII-1 and shall be submitted to the Engineer for approval. The Engineer may witness tests.

5. Measure and record acoustical output levels in machine room and both inside and outside of car to ensure Contract requirements are met.

6. Contractor shall test direction indicator system for proper operation.

C. Substantial Completion Inspection: District personnel will perform a full operation and quality control inspection, known as the Substantial Completion Inspection, after the above items had been completed. This inspection may occur prior to or after the State inspection. However, Substantial Completion certificate for the elevator will not be granted until the State issues an operating permit and all significant and most other punch list items identified during the Substantial Completion Inspection have been corrected and approved by the Engineer.

D. Final Acceptance Inspection: After the completion of the punch list items, submission and approval of all deliverables, including the Operation and Maintenance Manuals and training, and the Maintenance Period is near completion, the Contractor shall notify the Engineer at least two weeks in advance to schedule the Final Acceptance inspection. This inspection will verify that the punch list items have been completed and the elevator was properly maintained and is in good working condition.

E. Corrections: Correct all defects or discrepancies at no cost to the District. Should discrepancies be such that re-examination and re-testing is required, the Contractor shall pay for costs including those of the Engineer.

3.04 MAINTENANCE

A. The Contractor shall perform maintenance service for the elevator in accordance with Article 1.12, Maintenance Services.

3.05 CLEANUP DURING CONSTRUCTION

A. The Contractor shall keep elevator area, elevator machine room, and the space allocated to the Contractor’s work in a neat, safe and orderly condition.
3.06 FINAL CLEANING OF FACILITIES

A. Refer to Section 01 74 14, Cleaning. Prior to final inspection by the Engineer, and after all elevator work is essentially complete, thoroughly clean facilities including hoistway enclosures and car, utilizing professional building cleaners where appropriate.

3.07 TRAINING

A. Training Program: The Contractor shall provide either a Controller Simulator approved by the Engineer, which will become District property, or a program to train the District’s operations, maintenance and training personnel in details of the elevator system components which were installed or modified to enable the District to operate, service and maintain the elevators. In regard to the work of this Section, these provisions supersede Section 01 79 00, Demonstration and Training. As a minimum, training topics shall include controllers, door operators and drive system.

1. The training program shall include formal and informal instruction, as appropriate, and any models, mockups, documentation, and aids necessary to carry out the program.

2. Materials used in the training program shall be of durable construction and shall become the property of the District.

3. Assumptions:
 a. The Contractor shall assume that the personnel to be trained have only the basic skills pertinent to their craft as outlined in the District’s job descriptions for the involved personnel.

4. Training Program: The training program shall be submitted, for approval by the Engineer, within 30 Days of Submittal Completion and shall contain, at a minimum, the following data:
 a. A flow diagram indicating the logical progression of training to be conducted.
 b. A description of each course, including the number, description and duration for each lesson in the course.
 c. Resumes showing the qualifications of the proposed instructors. Instructors shall demonstrate a complete and thorough technical knowledge of the material being covered in the course. These instructors shall be thoroughly familiar with handbooks, guides, tools, test equipment, and other aids used in troubleshooting and repairing the equipment.
 d. A list of subcontractors and equipment manufacturers to be used in the training program and a description of their responsibilities.
 e. Complete written and practical tests to be administered at the conclusion of each course module and the grading system to evaluate the proficiency of each trainee. The grading system shall identify needs for further training as needed.
f. Third party training materials that are proposed to be included in the training program.

g. Draft of the training manual.

B. General: The training shall be provided to the District personnel with the operating procedures necessary to operate the systems. The courses shall include, but not be limited to, the following training:

1. Classroom training shall give course participants an understanding of the overall system operation.

2. Hands-on training shall give course participants actual maintenance experience.

C. Courses: Training shall consist of the Elevator System Maintenance Course.

1. The Elevator System Maintenance Course shall provide the District’s maintenance workers and trainers with detailed knowledge of and hands-on experience with the system functional capabilities and overall operation in order to properly troubleshoot and maintain the following components: controller, door operators, drive components, signal, and safety devices. The course shall provide participants with a working knowledge of these items and its operation, maintenance, interfaces, and use of test equipment for diagnosing troubles.

2. The course shall provide theoretical background and hands-on experience in troubleshooting and repair procedures to permit participants to locate and repair system faults in a time-efficient manner. Course shall include emergency provisions, including emergency access and procedures to be followed at time of failure in operation and other building emergencies. It shall train personnel in the procedures to be followed in checking the source of operation failure or malfunction. Operation of diagnostic equipment needed shall be explained.

3. The course shall utilize the complete Operation and Maintenance Manual.

4. The course shall utilize actual hardware and photographs taken during the manufacturing process wherever possible. Actual hardware used for training must pass re-inspection and acceptance testing prior to being placed in service.

5. The course shall consist of a minimum of eight hours of classroom training and eight hours of hands-on in the field training. The training shall not exceed 8 hours per day.

6. The course shall be presented a total of four times: The Contractor shall present first session within 60 days after the substantial completion of the first elevator. The final session shall be no later than within 120 Days after the first session.

7. Each class shall accommodate up to 10 participants.

D. Training Location and Classrooms: Training courses shall be conducted in facilities provided by the District. The facilities will be equipped with tables and chairs. The Contractor shall provide video players and projectors as required.
E. Instructors: Contractor shall provide qualified instructors. The instructors shall have previous formal classroom instruction training and relevant experience with the provided systems equipment in an operating environment.

1. The instructor shall present classes and instructions in person.

2. When prerecorded lectures are part of a training course, the instructor shall supplement the recorded material as needed to make it relevant to the actual installation being taught.

3. The instructors shall demonstrate a complete and thorough technical knowledge of the material being covered in the course. All instructors shall be thoroughly familiar with the handbooks, guides, tools, test equipment, and other aids used in troubleshooting and repairing the equipment.

F. Training Manuals and Equipment: Prepare training manuals to supplement the Operation and Maintenance Manuals and submit them to the Engineer for review and approval at least 90 Days prior to the start of classroom instruction. The training manuals shall be prepared specifically for use as training aids. The Operation and Maintenance Manuals shall be the primary text.

1. Each course participant shall receive copies of the Operation and Maintenance Manual, Training Manuals, and other pertinent material prior to the commencement of all courses.

2. In addition to the copies provided for trainees, the Contractor shall provide the master and two additional copies of all Training Manuals and class materials as reference documentation.

3. Upon completion of each course, Operation and Maintenance Manuals, Training Manuals, and Training Aids shall become the property of the District. Throughout the Contract and warranty periods, it shall be the responsibility of the Contractor to supply the District with any changes and revisions to the Training Manuals and other documentation.

4. The District reserves the right to copy training materials and aids for use in District conducted training courses.

5. The Contractor shall provide all special tools, equipment, training aids, and any other materials required to train course participants. The number of special tools and other training equipment shall be adequate for the number of participants attending each course session (up to 40 in all).

6. The District will provide the Contractor written comments on the Training, Training Manuals and equipment based upon the first sessions. The Contractor shall incorporate the comments and resubmit the documents 60 Days prior to the last training sessions.
G. Videotaping:

1. Provide video training tape(s) covering complete troubleshooting of elevator drive/fault finder system for use by District’s Instructors.

2. In addition, the Contractor may utilize prerecorded lectures as supplementary training material. These shall not serve as a replacement for a classroom instructor or as the primary training vehicle. The Contractor shall provide such videotapes to the District for retention and playback by the District’s Instructors as reference documentation.

3. The District shall have the right to videotape training courses presented by the Contractor. The District shall also have the right to use these videotapes to train personnel in the future.

H. Final Training Documents:

1. Updated and corrected Training Manuals and attachments as specified.

2. Sets of participant’s materials, 30 Days prior to commencement of training. Quantity of materials per class size specified herein.

3. Any models, mockups, simulations, or other material to conduct the training program.

END OF SECTION 14 21 00